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Abstract

This paper introduces a formal definition of a Cyber-Physical
System (CPS) in the spirit of the CPS Framework pro-
posed by the National Institute of Standards and Technology
(NIST). It shows that using this definition, various problems
related to concerns in a CPS can be precisely formalized and
implemented using answer set programming (ASP). These in-
clude the concern related to the dependence or conflicts be-
tween concerns, how to mitigate an issue, and what would be
the most suitable mitigation strategy for a given issue. It then
shows how ASP can be used to address the aforementioned
problems. The paper concludes with a discussion of the po-
tentials of the proposed methodologies.

Introduction
Self-driving cars, the utility (potable water, wastewater) dis-
tribution systems, the electric power grid, and the transporta-
tion network are a few examples of cyber-physical systems
(CPS)1 that are (or soon to be) a part of our daily life. A
CPS integrates computation and physical components. CPS
technologies are poised to transform the way people interact
with engineered systems with virtually limitless potential.
This is a reason for excitement as well as worries concern-
ing the use of CPS. Recent incidents such as the hack of the
Ring security cameras2 or the experiment-cum-stunt of self-
driving cars3, raise serious concerns about the security and
privacy of CPS. These two examples raise the concern called
Trustworthiness.

Indeed, there are several potential concerns related to the
use of CPS. As such, for a widespread adoption of CPS,
methodologies and systems must be developed to address
concerns related to the CPS, its components, and its inter-
actions with the outside world. Given a CPS specification,
we are interested in the following questions: (i) will a cer-
tain concern be satisfied? (ii) is there any potential conflict
between the concerns; and (iii) how can we generate a plan

1For brevity, we use CPS to stand for both the plural and the
singular cyber-physical system.

2https://www.cnn.com/2019/12/12/tech/ring-security-camera-
hacker-harassed-girl-trnd/index.html

3https://www.ft.com/content/
6000981a-1e03-11e8-aaca-4574d7dabfb6

that addresses an issue. The next example shows that com-
peting concerns is also a problem in CPS.

Example 1 In the autonomous car system (ACS), an
Integrity concern refers to the fact that the packets send-
ing from the wind-sensor to the situational awareness
module (SAM) should be fast and reliable; another concern
is the Encryption concern, which dictates that all commu-
nication channel must be encrypted.

Consider a situation in which the ACS has only one possi-
ble channel, a socket connection, which is fast, reliable, but
not encrypted. In this situation, the two concerns are in con-
flict with each other. It is impossible to satisfy both concerns.

The National Institute of Standards and Technology
(NIST) has taken the first step towards addressing the afore-
mentioned challenge. In the last few years, NIST has estab-
lished the CPS Public Working Group (CPS PWG) to bring
together a broad range of CPS experts in an open public fo-
rum to help define and shape key characteristics of CPS,
which allows us to better manage development and imple-
mentation within, and across, multiple smart application do-
mains. This resulted in the CPS Framework (CPSF) (Grif-
for et al. 2017a; Griffor et al. 2017b; Wollman et al. 2017),
which provides a principled design and analysis methodol-
ogy for CPS that is intended to be applicable across all rele-
vant domains of expertise. The methodology builds upon the
CPS Framework core concepts of facets (modes of the sys-
tem engineering process: conceptualization, realization and
assurance), concerns (areas of concern) and aspects (clus-
ters of concerns: functional, business, human, trustworthi-
ness, timing, data, composition, boundaries, and lifecycle).
Notably, CPSF also provides the foundation for the develop-
ment of reasoning systems capable of answering questions
related to concerns in a CPS (Balduccini et al. 2018).

This paper presents an ASP based solution to a variety
of important problems related to the satisfaction of concerns
of CPS. We formally propose the notion of a CPS system
that (i) allows for the specification of CPS with functional
decomposition of concerns; (ii) enables the automatic iden-
tification of conflicts between concerns; and (iii) enables the
application of planning techniques in computing mitigation
strategies.

The paper is organized as follows. The next section

https://www.cnn.com/2019/12/12/tech/ring-security-camera-hacker-harassed-girl-trnd/index.html
https://www.cnn.com/2019/12/12/tech/ring-security-camera-hacker-harassed-girl-trnd/index.html
https://www.ft.com/content/
6000981a-1e03-11e8-aaca-4574d7dabfb6


presents the background. Afterwards, we present a formal-
ization of a CPS theory and its ASP encoding. We then dis-
cuss the different problems in CPS and propose solutions to
them.

Background
Answer Set Programming. (ASP) (Marek and
Truszczyński 1999; Niemelä 1999) is a declarative
programming paradigm based on logic programming under
the answer set semantics. A logic program Π is a set of rules
of the form

c← a1, . . . ,am, not b1, . . . , not bn

where c, ai’s, and bi’s are atoms of a propositional lan-
guage4 and not represents (default) negation. Intuitively, a
rule states that if ai’s are believed to be true and none of
the bi’s is believed to be true then c must be true. For a rule
r, r+ and r−, referred to as the positive and negative body,
respectively, denote the sets {a1, . . . ,am} and {b1, . . . ,bn},
respectively.

Let Π be a program. An interpretation I of Π is a set of
ground atoms occurring in Π. The body of a rule r is satisfied
by I if r+ ⊆ I and r−∩ I = /0. A rule r is satisfied by I if the
body of r is satisfied by I implies I |= c. When c is absent, r
is a constraint and is satisfied by I if its body is not satisfied
by I. I is a model of Π if it satisfies all rules in Π.

For an interpretation I and a program Π, the reduct of Π

w.r.t. I (denoted by ΠI) is the program obtained from Π by
deleting (i) each rule r such that r−∩ I 6= /0, and (ii) all atoms
of the form not a in the bodies of the remaining rules. Given
an interpretation I, observe that the program ΠI is a program
with no occurrence of not a. An interpretation I is an answer
set (Gelfond and Lifschitz 1990) of Π if I is the least model
(wrt. ⊆) of PI .

Several extensions (e.g., choice atoms, aggregates, etc.)
have been introduced to simplify the use of ASP. We will
use and explain them whenever it is needed.

NIST CPS Framework CPSF provides a principled rep-
resentation of CPS developed by the working group with
various intents, including making it possible for experts
from disparate disciplines to collaborate on the design,
analysis, and maintenance of CPS. CPSF defines high-
level concept of “Concern” with its refinement of “As-
pect.” CPSF comes with an associated ontology, where
these concepts are formalized as classes and, for Aspect,
subclasses. Specific concerns are represented as individ-
uals: Trustworthiness as an individual of class As-
pect, Security and Cybersecurity of class Concern.
A relation “has-subconcern” is used to associate a con-
cern with its sub-concerns. Thus, Trustworthiness as-
pect “has-subconcern” Security, which in turn “has-
subconcern” Cybersecurity. The top part of Fig. 1, ex-
cluding the nodes labeled SAM, CAM and BAT and links
labeled “relates”, shows a fragment of CPSF where cir-
cle nodes represent concerns and rectangle nodes repre-
sent properties. Connections between concerns represent

4For simplicity, we often use first order logic atoms in the text
which represent all of its ground instantiations.
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Figure 1: A Fragment of the Trustworthiness Concern Ontology

sub-concern relations. Link from a property to a con-
cern represents that the property addresses an aspect of
the concern which might be grouped into different func-
tionality. For example, Integrity is a sub-concern of
Cyber-security, which is a sub-concern of Security,
a sub-concern of Trustworthiness; Secure-Boot,
Powerful-Mode properties address the Integrity con-
cern; Powerful-Mode, Normal-Mode, and Saving-Mode
address the Energy functionality of the Integrity con-
cern; etc.

CPSF provides an informal description of “what does it
mean for a concern to be satisfied?” Preliminary work ap-
plying CPSF in reasoning about satisfaction of concerns can
be found in (Balduccini et al. 2018) which requires a strong
notion of satisfaction of concern in that a concern is satis-
fied if all properties related to it are satisfied and all its sub-
concerns are satisfied.

Representing & Reasoning with CPSF Ontology in ASP
There have been work on using ASP in the context of Se-
mantic Web (e.g., (Eiter 2007; Nguyen, Son, and Pontelli
2018; Nguyen, Potelli, and Son 2018)) that emphasize the
use of ontologies. In these works, an ASP program is used
for reasoning about classes, properties, inheritance, rela-
tions, etc. We will use a similar approach in this paper. For
simplicity of representation, we assume that all classes, in-
stances, relations, properties of the CPS ontology are en-
coded in an ASP program5. We denote this program by
Π(Ω) where Ω denotes the ontology, which is the CPS on-
tology in this case. We list the predicates that will be fre-
quently discussed in this paper.
• class(X): X is a class;
• subClass(X,Y): X is a subclass of Y;

5They could be used on a need-based basis via an ontology-
query solver. This will be necessary when the ontology is large.



• aspect(I) (resp. concern(I), prop(I)): I is an indi-
vidual of class aspect (resp. concern, property);

• subCo(I,J): J is sub-concern of I; and
• addBy(C,P): concern C is addressed by property P (a

link from a property P to a concern C in the ontology);
• func(F,C): F is a functional decomposition of concern

C.
To reason about a subclass relationship, the encoding con-

tains the rule:
subClass(X,Y):-subClass(Z,Y),subClass(X,Z).

Similar rules for reasoning about the inheritance between
concerns, inheritance between subconcerns and concerns,
etc. are introduced whenever they are used subsequently. We
note that the CPSF does come with an informal semantics
about when a concern is supposedly be satisfied. The
work in (Balduccini et al. 2018) provides a preliminary
discussion on how the satisfaction of a concern can be
determined. It does not present a formal description of
the CPS system as in this paper and does not address the
functional decomposition issue though.

CPS Theory: Formal Definition
In this section, we will formalize the notions of a CPS sys-
tem and a CPS theory. To motivate this notion, let us look at
a concrete example.

Example 2 (Extended from (Balduccini et al. 2018))
Consider a lane keeping/assist (LKAS) of an advanced
car that uses a camera (CAM) and a situational awareness
module (SAM). The SAM processes the video stream from
the camera and controls, through a physical output, the
automated navigation system. In addition, the system also
has a battery (BAT).

CAM and SAM may use encrypted memory
(data encrypted) and a secure boot (secure boot).
Safety mechanisms in the navigation system cause it to shut
down if issues are detected in the input received from SAM.
The CAM and SAM can work on two operational modes,
either basic mode (basic mode or b mode) or advanced
mode (advanced mode or a mode). Two properties address
concern Integrity relevant to operation function.
In advanced mode, the component consumes much more
energy than if it were in basic mode. CAM is capable of two
recording modes, one at 25 fps (frames per second) and the
other at 50 fps. The selection of the recording mode is made
by SAM, by acting on a flag of the camera’s configuration.
BAT serves the system energy consumption and relates
with one of three properties, saving mode (s mode) or
normal mode (n mode) or powerful mode (p mode).
Three properties address concern Integrity relevant to
the energy functionality.

The relationship between SAM, CAM and BAT are: (1)
If both SAM and CAM are in advanced mode, the bat-
tery has to work in saving mode. (2) if CAM and SAM
are in basic mode, the battery can be in powerful mode
or normal mode and (3) if one of SAM and CAM is in
advanced mode and the other one is in basic mode, then
the battery must work in normal mode.
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Figure 2: Integrity and its Functionalities and Properties

Before we get to the precise definition of a CPS sys-
tem, let us discuss the relationship between the CPS
and the ontology. Informally, the CPSF defines that
the concern Integrity is satisfied if secure boot
is satisfied and its two functionalities, operation and
energy, are satisfied; the operation functionality is sat-
isfied if at least one of the properties {advanced mode,
basic mode} is satisfied; and the energy functionality
is satisfied if there is at least one of {saving mode,
normal mode, powerful mode} properties is satisfied. In-
tuitively, this can be represented by the following for-
mula: (secure boot)∧ (advanced mode∨basic mode)∧
(saving mode∨normal mode∨powerful mode)

The example shows that a CPS system is a dynamic do-
main and contains different components, each associated
with some properties which affect the satisfaction of con-
cerns defined in the CPS ontology. In addition, the satis-
faction of concerns depends on the truth values of formulae
constructed using properties and a concern might be related
to a group of properties. We will write ω(c) to denote the set
of properties that addresses a concern c. We therefore define
a CPS system as follows.

Definition 1 (CPS System) A CPS system S is a tuple
(CO,A,F,R,Γ) where:
• CO is a set of components;
• A is a set of actions that can be execute over S ;
• F is a finite set of fluents (or state variables) of the sys-

tem;
• Γ is a set of triples of the form (c, f u,ψ) where c is a
concern, f u is a functional decomposition of concern c,
and ψ is a formula constructed over ω(c); and
• R is a set of relations that maps each physical compo-

nent co ∈ CO to a set of properties R(co) defined in the
CPS ontology.

In Definition 1, (A,F) represents the dynamic domain of S ,
Γ represents constraints on the satisfaction of concerns in the
CPSF ontology in S , and R encodes the properties of com-
ponents in S which are related to the concerns specified in
the CPSF. As these properties can be changed by actions, we
assume that:

⋃
co∈CO R(co)∪ {active(co, p) | co ∈ CO, p ∈

R(co)} ⊆ F . (A,F) is associated with a set of statements in



one of the following forms:

Executability condition: executable a if p1, . . . , pn (1)
Dynamic law: a causes f if p1, . . . , pn (2)

State constraint: f if p1, . . . , pn (3)

where fluent f or pi stands for a fluent p ∈ F or its negation
¬p. (1) states that a can only be executed if p1, . . . , pn are
true; (2) says that if a is executed in a state where p1, . . . , pn
are true then f will become true; and (3) states that f is
true if if p1, . . . , pn are true. Semantics of dynamic domain
is defined in (Gelfond and Lifschitz 1998). Note that (A,F)
can be non-deterministic due to the presence of statements
of the form (3). Although it is possible, this rarely happens in
practical applications. We will, therefore, assume that (A,F)
is deterministic throughout this paper.

Example 3 The CPS system described in Example 2 can be
described by Slkas = (COlkas,Alkas,Flkas,Rlkas,Γlkas) where:
• COlkas = {SAM,CAM,BAT} .
• Alkas contains the following actions:

- switM(X,M), switA(X,A), switV(X,V),
switEM(X,EM) and switEA(X,EA) which denote
the actions of switching component X to mode M,
authorization method A, verification method V ,
encryption method EM and encryption algorithm EA
respectively, where the set of statements for action
switM(X,M) could be:
executable switM(cam,a mode)

if on(cam),active(cam,basic mode)
switM(cam,a mode) causes active(cam,a mode)
switM(cam,a mode) causes on(cam)
switM(cam,a mode) causes ¬active(cam,basic mode)
where a mode stands for advanced mode and
similar statements for switA(X,A), switV(X,V),
switEM(X,EM) and switEA(X,EA) respectively.

- tOn(P) and tOff(P) denotes actions of enabling and
disabling the truth value of property P. The set of
statements for action tOn(P) could be:
executable tOn(basic mode)

if audit(basic mode,false)
tOn(basic mode) causes audit(basic mode,true)
tOn(basic mode) causes ¬audit(basic mode,false)
and the similar statements for action tOff(P).

• Flkas contains the following fluents:
- active(X,P) denotes that component X is working

with property P. e.g., active(cam,basic mode),
active(cam,data encrypted),
active(sam,finger printing)
and active(bat,normal mode) denote that CAM is
working in basic mode, with encrypted data, SAM is
authenticated by finger printing method and BAT is
working in normal mode.

- on(X) (off(X)) denotes that component X is (isn’t)
ready to use.

• Rlkas = {CAM 7→ {ip filtering, data encrypted,
conn encrypted, protocol encrypted, mac check,
secure boot, basic mode, trusted acc device,
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Figure 3: Authorization concern and its Functionalities

advanced mode}, SAM 7→ {data encrypted,
algo RSA, algo AES, protocol encrypted,
conn encrypted, firewall setup, advanced mode,
basic mode, finger printing, two factors,
iris scan, secure boot}, BAT 7→ {powerful mode,
normal mode, saving mode}.
For visualization, the components and relations to the
properties are drawn in the bottom part of figure 1.
• Γlkas contains the following triples (see also Fig. 2

and 3):
- (integrity, operation, advanced mode ∨
basic mode ) says the satisfaction of formula
advanced mode ∨ basic mode addresses the
concern integrity in the relevant functional
decomposition operation.

- (integrity, energy, saving mode ∨
normal mode ∨ powerful mode) denotes
the formula saving mode ∨ normal mode ∨
powerful mode addresses the concern integrity
in the relevant functional decomposition energy.

- (authorization, sign in, oauth ∧ opt code) de-
notes the satisfaction of formula oauth ∧ opt code
addresses the relevant functional decomposition
sign in of the concern authorization.

- (authorization, sign in, two factors ∨
finger printing ∨ iris scan) denotes the
formula two factors ∨ finger printing ∨
iris scan addresses the concern authorization
in the relevant functional decomposition sign in.

- (authorization, sign in, oauth ∧ ip check
∧ email verify) denotes that the concern
authorization with the relevant functional
decomposition sign in is addressed by formula
oauth ∧ ip check ∧ email verify.

Given a CPS system S with a set of fluents F , a state s of S
is an interpretation of F that satisfies the set of static causal
laws of the form (3). Precise definition of this notion can be
found in (Gelfond and Lifschitz 1998). In the following, we
will follow this convention to describe a state s as a subset
of F and say that f ∈ s is true in s and f 6∈ s is false in s.

Definition 2 (CPS Theory) A CPS theory is a pair (S , I)
where S is a CPS system and I is a state representing the
initial configuration of S .



Given (S , I) where S = (CO,A,F,R,Γ), the action do-
main (A,F) specifies a transition function between states.
In each state, the satisfaction of a particular concern in the
CPSF is evaluated using the relationship R and the compo-
nents C. As the transition function induced by (A,F) has
been defined in (Gelfond and Lifschitz 1998), we will next
discuss how the satisfaction of concerns in the CPSF can be
evaluated. This is done by using ASP.

ASP Encoding of a CPS Theory
This section develops an ASP encoding given a CPS theory,
building on the work on planning in ASP and on formaliz-
ing CPS (e.g., (Gelfond and Lifschitz 1993; Balduccini et
al. 2018)). We start with the encoding of the theory. Given
(S , I) where S = (CO,A,F,R,Γ), Π(S )n, where n is a
non-negative integer representing the horizon of the system
that we are interested in, contains the following atoms6:
• for each 0≤ t ≤ n, an atom step(t);
• for each co ∈CO, an atom comp(co);
• for each a ∈ A, an atom action(a);
• for each f ∈ F , an atom f luent( f );
• for each co∈CO and p∈ R(co), an atom relation(co, p);
• for each (c, f u,ϕ) ∈ Γ, an atom f ormula(idϕ), an atom

addFun(c, f u, idϕ), and a set of atoms encoding ϕ ,
where idϕ is a unique identifier, c is a concern;

• the rules for reasoning about actions and changes (see,
e.g., (Son et al. 2006)):
◦ For each executability condition of the form (1) the

rule
exec(a,T):−step(T),h∗(p1,T), . . . ,h∗(pn,T).

◦ For each dynamic causal law of the form (2)
h∗(f,T+1):−step(T),occurs(a,T),

h∗(p1,T), . . . ,h
∗(pn,T).

◦ For each state constraint of the form (3):
h∗(f,T):−step(T),h∗(p1,T), . . . ,h∗(pn,T).

◦ The rules encoding the inertial axiom:
h(f,T+1):−step(T),h(f,T), not ¬h(f,T+1).
¬h(f,T+1):−step(T),¬h(f,T), not h(f,T+1).

where h∗(x,T) stands for h(x,T) if x ∈ F is a fluent and
¬h(y,T) if x = ¬y and y ∈ F .

Listing 1: Example program Π(Slkas) for LKAS
1 comp(sam). comp(cam). comp(bat).
2 action(switD(sam,data_encrypted)).
3 action(switM(cam,advanced_mode)).
4 relation(cam,ip_filtering).
5 relation(cam,data_encrypted).
6 relation(cam,conn_encrypted).
7 relation(cam,secure_boot).
8 relation(cam,basic_mode).
9 relation(cam,trusted_acc_device).

10 relation(sam,data_encrypted).
11 relation(sam,algo_RSA).
12 relation(sam,firewall_setup).
13 relation(sam,secure_boot).
14 relation(sam,basic_mode).

6We follow the convention in logic programming and use
strings starting with lower/uppercase letter to denote constants/-
variables.

15 relation(sam,finger_printing).
16 relation(bat,powerful_mode).

Listing 1 shows the encoding of components, actions, and
relations of Slkas. Listing 2 shows the ASP implementation
reasoning for Γlkas that is illustrated in Figures 2 and 3. Each
formula of a concern c is identified by a unique identifica-
tion number i.e. 1-5, denoted by formula/1. The predicate
func(F,C) states that F is the functional decomposition of
concern C. The predicate member(P,G) states that property
P is a member in formula G. The predicate addFun(C,F,G)
encodes that properties in formula G address the concern C
over relevant functional decomposition F .
Listing 2: A part of ASP encoding for Γlkas and Integrity concern

1 concern(integrity).
2 prop(advanced_mode). prop(basic_mode).
3 prop(saving_mode). prop(normal_mode).
4 prop(powerful_mode). prop(secure_boot).
5 addBy(integrity,advanced_mode).
6 addBy(integrity,basic_mode).
7 addBy(integrity,saving_mode).
8 addBy(integrity,normal_mode).
9 addBy(integrity,powerful_mode).

10 addBy(integrity,secure_boot).
11 formula(1..5).
12 func(operation_func,integrity).
13 func(energy_func,integrity).
14 member(advanced_mode,1).
15 member(basic_mode,2).
16 member(powerful_mode,3).
17 member(normal_mode,4).
18 member(saving_mode,5).
19 addFun(integrity,operation_func,1).
20 addFun(integrity,operation_func,2).
21 addFun(integrity,energy_func,3).
22 addFun(integrity,energy_func,4).
23 addFun(integrity,energy_func,5).

The encoding of the initial configuration I of a CPS the-
ory (S , I), denoted by Π(I), consists of atoms of the form
obs( f , true) and obs( f , f alse) for f ∈ I and two rules that
define the predicate h and ¬h at the time step 0. Listing 3
shows a part of the initial configuration of Slkas and the
rules that define h and ¬h (Lines 12-13) which state that
a property does hold if it is in I and does not hold otherwise.

Listing 3: A part of initial configuration of Π(Ilkas)

1 obs(finger_printing,true). obs(oauth,true).
2 obs(two_factors,true). obs(opt_code,true).
3 obs(iris_scan,false). obs(ip_check,true).
4 obs(email_verify,false).
5 obs(trusted_acc_device,true).
6 obs(secure_boot,true).
7 obs(basic_mode,true).
8 obs(advanced_mode,true).
9 obs(saving_mode,true).

10 obs(normal_mode,true).
11 obs(powerful_mode,true).
12 h(P,0) :- obs(P,true), prop(P).
13 ¬h(P,0) :- obs(P,false), prop(P).

Listing 4 is for reasoning about the satisfaction of concerns
in CPS theory: h(sat(C),T) states that concern C is satisfied
at the time step T; and h(sat(C,F),T) states that concern
C relevant to functional decomposition F is satisfied at the



time step T.
Listing 4: Πsat : Satisfaction Reasoning in Ω

1 ¬sat formula(C,F,G,T):- concern(C),prop(P),
2 formula(G), func(F,C), addBy(C,P),
3 member(P,G), addFun(C,F,G), not h(P,T),
4 step(T).
5 sat formula(C,F,G,T):-concern(C),func(F,C),
6 formula(G), addFun(C,F,G), step(T),
7 not ¬sat formula(C,F,G,T).
8 ¬h(sat(C,F),T):- concern(C), func(F,C),
9 not sat formula(C,F,_,T).

10 h(sat(C,F),T):- not ¬h(sat(C,F),T),
11 func(F,C).
12 ¬h(sat(C),T) :- concern(C), func(F,C),
13 not h(sat(C,F),T).
14 ¬h(sat(C),T) :- concern(C), func(F,C),
15 ¬h(sat(C,F),T).
16 ¬h(sat(C),T):- ¬h(P,T), addBy(C,P),
17 not member(P,_).
18 ¬h(sat(X),T):- subCo(X,Y), not h(sat(Y),T).
19 ¬h(sat(X),T):- subCo(X,Y), ¬h(sat(Y),T).
20 h(sat(C),T):- not ¬h(sat(C),T), concern(C).

The first rule (lines 1-4) encodes the reasoning for
sat formula/4 which checks whether are there any un-
satisfied property that is a member in a formula G address-
ing concern C relevant to functional decomposition F . The
next rule (lines 5-7) states that sat formula/4 is satisfied
if it cannot be proven to be unsatisfied. The third rule (lines
8-9) reasons the unsatisfaction of a concern C relevant to
functional decomposition F at time step T if the predicate
sat formula/4 does not hold. The rule in line 10 says that
a concern C relevant to functional decomposition F is sat-
isfied if it cannot be proven to be unsatisfied. Lines 12-15
represent that if there is not any evidence for the satisfac-
tion of concern C relevant to functional decomposition F or
it is not satisfied, then this concern is unsatisfied. Rule in
lines 16-17 states that concern C is not addressed if some of
its properties that are not belong to any formula G of C are
false. Rules in lines 18-19 propagate the unsatisfaction of a
concern from its subconcerns. Finally, a concern is satisfied
if it cannot be proven to be unsatisfied. The satisfaction of
concerns is defined next.

Definition 3 (Concern Satisfaction) Given a CPS theory
∆ = (S , I) and a concern c, we say that c is satisfied (or
unsatisfied) at the time t if h(sat(c), t) (or ¬h(sat(c), t)) is in
every answer set of Π(∆), denoted by (S , I) |= h(sat(c), t)
or (S , I) |= ¬h(sat(c), t) respectively.

We note that notion of satisfaction of a concern has been
considered in (Balduccini et al. 2018). The major difference
between this paper and the work lies in the introduction of
formulas representing the satisfaction of concerns.

For each CPS theory ∆ = (S , I), we denote Π(∆) =
Π(S )n ∪Π(I)∪Πsat . It is worth mentioning that Π(∆) al-
lows us to reason about effects of actions in the following
sense: assume that [a0, . . . ,an−1] is a sequence of actions,
then Π(∆)∪{occurs(ai, i) | i = 0, . . . ,n− 1} has an answer
set S if and only if (i) a0 is executable in the state I; (ii)
for each i > 0, ai+1 is executable after the execution of the
sequence [a0, . . . ,ai]; (iii) for each i, the set {h( f , i) | f ∈

F,h( f , i) ∈ S} is a state of S .

Conflict Detection in CPS Systems
A serious issue in CPS is that some concern cannot be sat-
isfied. Example 1 shows that there exists situation in which
competing concerns cannot be satisfied at the same time. In
general, the problem is formulated as follows.

Definition 4 (Conflict) Given the CPS system
S = (CO,A,F,R,Γ), an integer k, a set of actions
SA ⊆ A, and a set of concerns SC, we say that S is
k-conflict wrt. (SA,SC) if there exists a sequence α of
at most k actions in SA and an initial state I, such that
(S , I) |= ¬h(sat(c),k+1) for some concern c ∈ SC.

The program Π(S )k+1∪Πsat can be used in conflict de-
tection by adding the following rules:

Listing 5: Πk(SA,SC): Conflict Detection
1 1{occurs(A,T):sa action(A)}1 :- step(T),
2 T<k, not conflict(T).
3 1 {h(F,0); ¬h(F,0)} 1 :- fluent(F).
4 :- occurs(A,T), not exec(A,T).
5 conflict(T) :- sc concern(C), ¬h(sat(C),T).
6 conflict(T+1) :- conflict(T).
7 :- not conflict(k).

We assume that actions in SA are specified by atoms of
the form sa action(a) and concerns in SC are specified by
atoms of the form sc concern(c). It is easy to see that an
answer set S of Π(S )k+1 ∪Πsat ∪Πk+1(SA,SC) represents
a situation in which the system will eventually not satisfy
some concern in SC. Specifically, if the sequence of actions
[a0, . . . ,at ] such that occurs(ai, i)∈ S and, for s > t, there ex-
ists no occurs(as,s) ∈ S, is executed in the initial state (the
set { f | h( f ,0)∈ S, f ∈F}∪{¬ f | ¬h( f ,0)∈ S, f ∈F}) then
some concern in c will not be satisfied after k steps.

Computing Mitigation Strategies
The mitigation problem in a CPS can be defined as follows:
Definition 5 (Mitigation Strategy) Let ∆ = (S , I) be a
CPS theory where S = (CO,A,F,R,Γ) is a CPS domain.
Let Σ be a set of concerns. A mitigation strategy addressing
Σ is a plan [a1, . . . ,ak] whose execution at the initial state s
results in a state s′ such that for every c ∈ Σ, c is satisfied in
s′.

Listing 6: Πn
plan: Generating Plan

1 1{occurs(A,T):action(A)}1 :- step(T), T<n.
2 :- occurs(A,T)}, not exec(A,T).
3 :- not h(sat(c), n).

The first rule containing the atom
1{occurs(A,T) : action(A)}1 — a choice atom — is
used to generate the action occurrences and says that at
any step T , exactly one action must occur. The second rule
states that an action can only occur if it is executable. The
last rule helps enforce that h(sat(c),n) must be true in the
last state, at step n. For a set of concerns Σ, let Πn

plan[Σ] be
the program obtained from Πn

plan by replacing its last rule
with the set {:−not h(sat(c),n). | c ∈ Σ}. Based on the
results in answer set planning, we can show:
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after cyber-attack

Proposition 1 Let ∆ = (S , I) be a CPS theory and Σ be
a set of concerns. Then, [a0, . . . ,an−1] is a mitigation strat-
egy for Σ iff Π(∆)∪Πn

plan[Σ] has an answer set S such that
occurs(ai, i) ∈ S for every i = 0, . . . ,n−1.

The proof of this proposition relies on the properties of Π(∆)
discussed in previous section and the set of constraints in
Πn

plan[Σ]. We omit the details for brevity.
Definition 5 assumes that all plans are equal. This is

often not the case in a CPS system. To illustrate this is-
sue, consider the LKAS system in Example 2. The initial
state Ilkas is given by: CAM and SAM are in basic mode and
secure boot, BAT is in powerful mode. The energy con-
sumption constraints of BAT are encoding in listing 7. Fig-
ure 4 shows a fragment of the CPS theory that is related to
the problem described in this example.

Listing 7: Battery consumption constraints in ∆lkas

1 h(active(bat,saving_mode),T):-
2 h(active(cam,advanced_mode),T),
3 h(active(sam,advanced_mode),T).
4 1{h(active(bat,powerful_mode),T);
5 h(active(bat,normal_mode),T)}1:-
6 h(active(cam,basic_mode),T),
7 h(active(sam,basic_mode),T).
8 h(active(bat,normal_mode),T):-
9 h(active(X,advanced_mode),T),

10 h(active(Y,basic_mode),T), X!=Y .
11 :- h(active(bat,M1),T),
12 h(active(bat,M2),T), M1!=M2.

A cyber-attack occurs and the controller module is at-
tacked, which causes basic mode to become False while
advanced mode is (True). Given this information, we need
a mitigation strategy for the set Σ = {Integrity}. The pro-
gram Πp(∆lkas) can generate the following strategies (for
n = 2):
• α1= tOn(b mode)

• α2= switM(cam,a mode) · switM(sam,a mode)

• α3= switM(sam,a mode) · switM(cam,a mode)

• α4= switM(sam,a mode) · tOn(b mode)

• α5= switM(cam,a mode) · tOn(b mode)

All five above mitigation strategies can be used to address
the issue raised by the attack. Specifically, the final state of
each plan is given below:
• Gα1 is {CAM 7→ b mode, CAM 7→ secure boot, SAM 7→
b mode, SAM 7→ secure boot, BAT 7→ p mode } or
{CAM 7→ b mode, CAM 7→ secure boot, SAM 7→ b mode,
SAM 7→ secure boot, BAT 7→ n mode }
• Gα2 and Gα3 : {CAM 7→ a mode, CAM 7→ secure boot,
SAM 7→ a mode, SAM 7→ secure boot, BAT 7→ s mode }
• Gα4 is {CAM 7→ b mode, CAM 7→ secure boot, SAM 7→
a mode, SAM 7→ secure boot, BAT 7→ n mode }
• Gα5 is {CAM 7→ a mode, CAM 7→ secure boot, SAM 7→
b mode, SAM 7→ secure boot, BAT 7→ n mode }
In each considered state, the statement X 7→ P de-

notes that component X is working with property P.
For example, BAT 7→ s mode says that the battery is
working in saving mode. Observe that the components,
though its activation of properties, could affect posi-
tively or negatively on the concerns. Furthermore, how
a property can affect positively or negatively on the
concerns is described in the CPS Ontology (Balduccini
et al. 2018). For example, considering example 2, the
three components can positively affect the Integrity
concern if {CAM 7→ {secure boot, advanced mode},
SAM 7→ {advanced mode, secure boot}, BAT
7→ {powerful mode} hold. For this reason, we will
introduce a notion called likelihood of satisfaction (LoS) of
concern and use them to distinguish mitigation strategies.
There are, of course, different ways of looking at the LoS.
Our notion relies on the positive impacts of properties on
concerns within the system, i.e., property secure boot
positively impacts Integrity. For a concern c, we de-
note with rel+(c) the set of all properties that positively
impacting concern c.

Definition 6 (Impact Degree) Given a CPS ontology, c is
a concern and s is a configuration (state) of S , the positive
impact degree of concern c in state s, denoted by deg+(c,s),
is defined as:

deg+(c,s) =

 | rel+sat(c,s) |
| rel+(c) |

if rel+(c) 6= /0

1 otherwise

where rel+sat(c,s) is the set of properties in rel+(c) which
hold in state s

Considering the five final configurations of different
mitigation strategies in our example above, we have:
deg+(Integrity,G1

α1
) = 0.6, deg+(Integrity,G2

α1
) = 0.4,

deg+(Integrity,Gα2) = 0.8, deg+(Integrity,Gα3) = 0.8,
deg+(Integrity,Gα4) = 0.6, and deg+(Integrity,Gα5)
= 0.6. We also have that deg+(availability, ) = 1,
deg+(security, ) = 1, deg+(trustworthiness, ) = 1, etc.
Listing 8 shows the ASP program for computing the positive
impact degree of a concern following Definition 6, where
the predicates nAllPosCon/3 and nActPosCon/3 define
the number of all possible positively impacting properties



on concern C and the number of positively impacting
properties on concern C holding in step T respectively.
The predicate possImpactsPos(Com,P,C) denotes that
the relation between component Com and property P is a
positive relation and impacts positively to concern C. This
predicate is generated from CPS ontology.

Listing 8: Computing Positive Impacts Degree
1 nAllPosCon(C,N2,T):- concern(C), step(T),
2 N2=#count{P,Com : comp(Com), prop(P),
3 possImpactsPos(Com,P,C), addBy(C,P)}.
4 nActPosCon(C,N1,T):- concern(C), step(T),
5 N1=#count{P,Com : comp(Com), prop(P),
6 possImpactsPos(Com,P,C), addBy(C,P),
7 h(active(Com,P),T)}.
8 deg pos(C,1,T) :- step(T), concern(C),
9 nAllPosCon(C,0,T).

10 deg pos(C,N1*100/N2,T) :- concern(C),
11 nActPosCon(C,N1,T),
12 nAllPosCon(C,N2,T),N2!=0.

In listing 8, lines 1-3 (4-7) encode the rules for compute
nAllPosCon/3 (nActPosCon/3) which represent rel+(c)
and rel+sat(c,s), respectively. The other rules calculate the
positive impact degree of concern C in step T by defining
deg pos(C,V,T) which states that V is the positive impact
degree of C at step T . We next define the likelihood of satis-
faction of a concern.
Definition 7 (Likelihood of Concern Satisfaction) Given
a CPS S , a state s if S , and a concern c. The likelihood
of the satisfaction (LoS) of c in s, denoted by ϕllh(c,s), is
defined by

ϕllh(c,s)=
{

deg+(c,s)∗Πx∈sub(c)ϕllh(x,s), if sub(c) 6=∅
deg+(c,s), if sub(c) =∅

(4)
where sub(c) is a set of subconcerns of c.
Listing 9 shows the ASP encoding for computing of LoS of
concerns. It defines the predicate llh sat(C,N,T) which
states that the likelihood of satisfaction of concern C at time
step T is N.

Listing 9: Computing Likelihood of Concerns Satisfaction
1 order(SC,C,N):- subCo(C,SC),
2 N={SC < SCp : subCo(C,SCp)}.
3 hSubCo(C) :- subCo(C,SC).
4 ¬hSubCo(C):- concern(C), not hSubCo(C).
5 llh sat sub(C,1,T) :- step(T), concern(C),

¬hSubCo(C).
6 llh sat(C,N1*N2,T):- step(T), concern(C),

llh sat sub(C,N1,T), deg pos(C,N2,T).
7 llh sat sub aux(C,0,X,T):- step(T),
8 subCo(C,SC), order(SC,C,0),
9 llh sat(SC,X,T).

10 llh sat sub aux(C,N,X*Y,T):- step(T),
11 subCo(C,SC), order(SC,C,N),
12 llh sat(SC,Y,T),
13 llh sat sub aux(C,N-1,X,T).
14 llh sat sub(C,X,T):- step(T), concern(C),
15 llh sat sub aux(C,N,X,T),
16 not llh sat sub aux(C,N+1,_,T).

In listing 9, the rule on Lines 1-2 creates an ordering be-
tween subconcerns of concern C for the computation of
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Figure 5: Trustworthiness concern tree with LoCS

llh sat(C,N,T). Any concern without a subconcern will
be computed first (Line 5). Rules on the lines 7-16 compute
the LoS of concerns in accordance with the order created by
rule on lines 1-2. llh sat(C,N,T) is then computed using
Equation 4.

Figure 5 shows the trustworthiness tree for the
final configurations of mitigation strategies α2 and α3
(Gα2 and Gα3 ), where LoS values are computed and
displayed as a number at the top-left of each con-
cern. In all possible strategies, there are also the best
mitigation strategies which are especially relevant to
the trustworthiness attribute, where the LoS of
trustworthiness aspect in final state is maximum. In
this figure, the LoS of trustworthiness (root concern)
is 0.075 (llh sat(trustworthiness)=0.075). By ap-
plying a similar methodology for all remaining aspects (i.e.
business, functional, timing etc.), we can calculate
LoS values for all nine aspects in CPS Ontology.

Selecting Most Preferred Mitigation Strategy. Having
defined the LoS of different concerns, we can now use
this notion in comparing mitigation strategies. It is worth
to mention that CPSF defines nine top-level concerns
((e.g., trustworthiness, functionality, timing,
etc.). Therefore, there are different ways to use this number.
We discuss two possibilities:
• Weighted LoS: The CPS users (end users, adminis-

trators, manufacturers, managers, etc.) specifies the
weights Wf un, Wbus, Whum, Wtru, Wtim, Wdat , Wbou,
Wcom and Wli f which they would like to assign for the
nine aspects: Functionality, Business, Human,
Trustworthiness, Timing, Data, Boundaries,
Composition and Lifecycle respectively. The
weighted LoS of a system S in state s is then com-
puted by w(S ,s) = llh sat(Functionality,s) ∗ Wf un
+ llh sat(Business,s) ∗ Wbus + llh sat(Human,s) ∗
Whum + llh sat(Trustworthiness,s) ∗ Wtru +



llh sat(Timing,s) ∗ Wtim + llh sat(Data,s) ∗ Wdat +
llh sat(Boundaries,s)∗Wbou + llh sat(Composition,s)∗
Wcom + llh sat(Li f estyle,s)∗Wli f .
Under this view, w(S ,n), where n denotes the final time
step of Πn

plan, can easily be computed. We omit the rule
for brevity. To select the most preferred mitigation strat-
egy (highest LoS), we only need to add the following
rule:
#maximize{Sc : scoreLoS(Sc,T),last(T)}.
to the program, where scoreLoS(sc,n) indicates that
w(S ,n) = sc.

• Specified Preferences LoS: An alternative to the
weighted LoS of a system is to allow the users to
specify a partial ordering of the set of attributes which
will be used in identifying the preferred strategies
by lexical ordering in accordance to the preferences.
For example, assume that the preference ordering is
x1 > x2 > x3 > x4 > x5 > x6 > x7 > x8 > x9 where xi > x j
which means that attribute xi is preferred to the attribute
x j 6= xi and xi ∈ {Functionality, Business,
Human, Trustworthiness, Timing, Data,
Boundaries, Composition, Lifecycle}. As the
values of the LoS of aspects in different states in S
behave differently, we write llh sat(x,s) ≺ llh sat(x,s′)
to denote that state s′ is better than s w.r.t the attribute
x. The most preferred final configuration of mitigation
strategies is defined via a lexicographic ordering: p ≺ p′
if there is 1≤ i≤ 9 such that llh satx j(p) = llh satx j(p′)
for j < i and llh satxi(p) ≺ llh satxi(p′). This can easily
be implemented using the priority level in clingo.
#maximize{llh sat(x1)@9}.
#maximize{llh sat(x2)@8}.
#maximize{llh sat(x3)@7}.
#maximize{llh sat(x4)@6}.
#maximize{llh sat(x5)@5}.
#maximize{llh sat(x6)@4}.
#maximize{llh sat(x7)@3}.
#maximize{llh sat(x8)@2}.
#maximize{llh sat(x9)@1}.
For a concrete example, assume that the ordering
preference is Trustworthiness > Functionality >
Timing > Human >Composition > Data > Li f ecycle >
Business > Boundaries, the corresponding ASP encod-
ing is as follow where Tlast is final planning step:
#maximize{VT @9 : llh sat(trustworthiness,VT ,Tlast)}.
#maximize{VF @8 : llh sat( f unctionality,VF ,Tlast)}.
#maximize{VT I@7 : llh sat(timing,VT I ,Tlast)}.
#maximize{VH@6 : llh sat(human,VH ,Tlast)}.
#maximize{VC@5 : llh sat(composition,VC,Tlast)}.
#maximize{VD@4 : llh sat(data,VD,Tlast)}.
#maximize{VL@3 : llh sat(li f ecycle,VL,Tlast)}.
#maximize{VB@2 : llh sat(business,VB,Tlast)}.
#maximize{VBO@1 : llh sat(boundaries,VBO,Tlast)}.

Conclusions, Related Work, and Discussion
The paper presents a precise definition of a CPS, which, in
conjunction with the CPS Framework, allows for the repre-
senting and reasoning of various problems that are of interest

in the study of CPS. Specifically, the paper presents an ASP
based solution for the verification of various concerns in a
CPS. It discusses the problem of identifying conflict con-
cerns in a CPS system. Finally, it discusses different meth-
ods for selecting a preferred mitigation strategy. To the best
of our knowledge, all of these contributions are new to the
research in Cyber-Physical System.

Due to space constraints, we limit our overview of related
work to what we consider the most relevant approaches.
The literature from the area of cybersecurity is often fo-
cused on the notion of graph-based attack models. Of partic-
ular relevance is the work on Attack-Countermeasure Trees
(ACT) (Roy, Kim, and Trivedi 2012). An ACT specifies
how an attacker can achieve a specific goal on a IT sys-
tem, even when mitigation or detection measures are in
place. While ACT are focused on the Cybersecurity con-
cern, our approach is rather generally applicable to the
broader Trustworthiness aspect of CPS and can in princi-
ple be extended to arbitrary aspects of CPS and their de-
pendencies. The underlying formalization methodology also
allows for capturing sophisticated temporal models and ram-
ified effects of actions. In principle, our approach can be
extended to allow for quantitative reasoning, e.g. by lever-
aging recent work on Constraint ASP and probabilistic ASP
(Balduccini and Lierler 2017; Ostrowski and Schaub 2012;
Baral, Gelfond, and Rushton 2009). As we showed above,
one may then generate answers to queries that are opti-
mal with respect to some metrics. It is worth pointing out
that the combination of physical (non-linear) interaction
and logical (discrete or Boolean) interaction of CPS can be
modeled as a mixed-integer, non-linear optimization prob-
lem (MINLP) extended with logical inference. MINLP ap-
proaches can support a limited form of logic, e.g. through
disjunctive programming (Balas 1975). But these methods
seem to struggle with supporting richer logics and infer-
ences such as “what-if” explorations. For relevant work in
this direction, we refer the reader to (Mistr et al. 2017;
D’Iddio and Huth 2017).

The proposed methodologies in this paper build on a vast
number of research results in ASP and related areas such as
answer set planning, reasoning about actions, etc. and could
be easily extended to deal with other aspects discussed in
CPSF. They are well-positioned for real-world applications
given the efficiency and scalability of ASP-solvers (e.g.,
clingo) that can deal with millions of atoms, incomplete
information, default reasoning, and features that allow ASP
to interact with constraint solvers and external systems.
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